Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Patient Representations from Text (1805.02096v1)

Published 5 May 2018 in cs.CL

Abstract: Mining electronic health records for patients who satisfy a set of predefined criteria is known in medical informatics as phenotyping. Phenotyping has numerous applications such as outcome prediction, clinical trial recruitment, and retrospective studies. Supervised machine learning for phenotyping typically relies on sparse patient representations such as bag-of-words. We consider an alternative that involves learning patient representations. We develop a neural network model for learning patient representations and show that the learned representations are general enough to obtain state-of-the-art performance on a standard comorbidity detection task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dmitriy Dligach (16 papers)
  2. Timothy Miller (27 papers)
Citations (17)