Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomials and tensors of bounded strength (1805.01816v2)

Published 4 May 2018 in math.AG and math.CO

Abstract: Notions of rank abound in the literature on tensor decomposition. We prove that strength, recently introduced for homogeneous polynomials by Ananyan-Hochster in their proof of StiLLMan's conjecture and generalised here to other tensors, is universal among these ranks in the following sense: any non-trivial Zariski-closed condition on tensors that is functorial in the underlying vector space implies bounded strength. This generalises a theorem by Derksen-Eggermont-Snowden on cubic polynomials, as well as a theorem by Kazhdan-Ziegler which says that a polynomial all of whose directional derivatives have bounded strength must itself have bounded strength.

Summary

We haven't generated a summary for this paper yet.