Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of a Gene Regulatory Network from Gene Expression Profiles With Linear Regression and Pearson Correlation Coefficient (1805.01506v1)

Published 2 May 2018 in q-bio.GN, cs.CE, and q-bio.MN

Abstract: Reconstruction of gene regulatory networks is the process of identifying gene dependency from gene expression profile through some computation techniques. In our human body, though all cells pose similar genetic material but the activation state may vary. This variation in the activation of genes helps researchers to understand more about the function of the cells. Researchers get insight about diseases like mental illness, infectious disease, cancer disease and heart disease from microarray technology, etc. In this study, a cancer-specific gene regulatory network has been constructed using a simple and novel machine learning approach. In First Step, linear regression algorithm provided us the significant genes those expressed themselves differently. Next, regulatory relationships between the identified genes has been computed using Pearson correlation coefficient. Finally, the obtained results have been validated with the available databases and literatures. We can identify the hub genes and can be targeted for the cancer diagnosis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.