Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise Invariant Frame Selection: A Simple Method to Address the Background Noise Problem for Text-independent Speaker Verification (1805.01259v1)

Published 3 May 2018 in cs.SD, cs.CV, and eess.AS

Abstract: The performance of speaker-related systems usually degrades heavily in practical applications largely due to the presence of background noise. To improve the robustness of such systems in unknown noisy environments, this paper proposes a simple pre-processing method called Noise Invariant Frame Selection (NIFS). Based on several noisy constraints, it selects noise invariant frames from utterances to represent speakers. Experiments conducted on the TIMIT database showed that the NIFS can significantly improve the performance of Vector Quantization (VQ), Gaussian Mixture Model-Universal Background Model (GMM-UBM) and i-vector-based speaker verification systems in different unknown noisy environments with different SNRs, in comparison to their baselines. Meanwhile, the proposed NIFS-based speaker verification systems achieves similar performance when we change the constraints (hyper-parameters) or features, which indicates that it is robust and easy to reproduce. Since NIFS is designed as a general algorithm, it could be further applied to other similar tasks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.