Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gerstenhaber algebra structure on the cohomology of a hom-associative algebra (1805.01207v2)

Published 3 May 2018 in math.RA

Abstract: A hom-associative algebra is an algebra whose associativity is twisted by an algebra homomorphism. In this paper, we define a cup product on the cohomology of a hom-associative algebra. We show that the cup product together with the degree $-1$ graded Lie bracket (which controls the deformation of the hom-associative algebra structure) on the cohomology forms a Gerstenhaber algebra. This generalizes a classical fact that the Hochschild cohomology of an associative algebra carries a Gerstenhaber algebra structure.

Summary

We haven't generated a summary for this paper yet.