Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending inferences from a randomized trial to a new target population (1805.00550v3)

Published 1 May 2018 in stat.ME

Abstract: When treatment effect modifiers influence the decision to participate in a randomized trial, the average treatment effect in the population represented by the randomized individuals will differ from the effect in other populations. In this tutorial, we consider methods for extending causal inferences about time-fixed treatments from a trial to a new target population of non-participants, using data from a completed randomized trial and baseline covariate data from a sample from the target population. We examine methods based on modeling the expectation of the outcome, the probability of participation, or both (doubly robust). We compare the methods in a simulation study and show how they can be implemented in software. We apply the methods to a randomized trial nested within a cohort of trial-eligible patients to compare coronary artery surgery plus medical therapy versus medical therapy alone for patients with chronic coronary artery disease. We conclude by discussing issues that arise when using the methods in applied analyses.

Summary

We haven't generated a summary for this paper yet.