Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Runge-Kutta Discretization Achieves Acceleration (1805.00521v5)

Published 1 May 2018 in math.OC, cs.LG, and stat.ML

Abstract: We study gradient-based optimization methods obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the continuous limit of Nesterov's accelerated gradient method. When the function is smooth enough, we show that acceleration can be achieved by a stable discretization of this ODE using standard Runge-Kutta integrators. Specifically, we prove that under Lipschitz-gradient, convexity and order-$(s+2)$ differentiability assumptions, the sequence of iterates generated by discretizing the proposed second-order ODE converges to the optimal solution at a rate of $\mathcal{O}({N{-2\frac{s}{s+1}}})$, where $s$ is the order of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local flatness condition on the objective, under which rates even faster than $\mathcal{O}(N{-2})$ can be achieved with low-order integrators and only gradient information. Notably, this flatness condition is satisfied by several standard loss functions used in machine learning. We provide numerical experiments that verify the theoretical rates predicted by our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jingzhao Zhang (54 papers)
  2. Aryan Mokhtari (95 papers)
  3. Suvrit Sra (124 papers)
  4. Ali Jadbabaie (143 papers)
Citations (105)

Summary

We haven't generated a summary for this paper yet.