Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theory of Kerr frequency combs in Fabry-Perot resonators (1805.00427v1)

Published 1 May 2018 in physics.optics

Abstract: We derive a spatiotemporal equation describing nonlinear optical dynamics in Fabry-Perot (FP) cavities containing a Kerr medium. This equation is an extension of the equation that describes dynamics in Kerr-nonlinear ring resonators, referred to as the Lugiato-Lefever equation (LLE) due to its formulation by Lugiato and Lefever in 1987. We use the new equation to study the properties of Kerr frequency combs in FP resonators. The derivation of the equation starts from the set of Maxwell-Bloch equations that govern the dynamics of the forward and backward propagating envelopes of the electric field coupled to the atomic polarization and population difference variables in a FP cavity. The final equation is formulated in terms of an auxiliary field $\psi(z,t)$ that evolves over a slow time $t$ on the domain $-L \leq z \leq L$ with periodic boundary conditions, where $L$ is the cavity length. We describe how the forward and backward propagating field envelopes are obtained after solving the equation for $\psi$. This formulation makes the comparison between the FP and ring geometries straightforward. The FP equation includes an additional nonlinear term relative to the LLE for the ring cavity, with the effect that the value of the detuning parameter $\alpha$ of the ring LLE is increased by twice the average of $|\psi|2$. This feature establishes a connection between the stationary phenomena in the two geometries. For the FP-LLE, we discuss the linear stability analysis of the flat stationary solutions, analytic approximations of solitons, Turing patterns, and nonstationary patterns. We note that Turing patterns with different numbers of rolls may exist for the same values of the system parameters. We then discuss some implications of the nonlinear integral term in the FP-LLE for the kind of experiments which have been conducted in Kerr-nonlinear ring resonators.

Summary

We haven't generated a summary for this paper yet.