Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Polynomials of the Multi-Indexed ($q$-)Racah Orthogonal Polynomials (1805.00345v2)

Published 30 Apr 2018 in math-ph, hep-th, math.CA, math.MP, and nlin.SI

Abstract: We consider dual polynomials of the multi-indexed ($q$-)Racah orthogonal polynomials. The $M$-indexed ($q$-)Racah polynomials satisfy the second order difference equations and various $1+2L$ ($L\geq M+1$) term recurrence relations with constant coefficients. Therefore their dual polynomials satisfy the three term recurrence relations and various $2L$-th order difference equations. This means that the dual multi-indexed ($q$-)Racah polynomials are ordinary orthogonal polynomials and the Krall-type. We obtain new exactly solvable discrete quantum mechanics with real shifts, whose eigenvectors are described by the dual multi-indexed ($q$-)Racah polynomials. These quantum systems satisfy the closure relations, from which the creation/annihilation operators are obtained, but they are not shape invariant.

Summary

We haven't generated a summary for this paper yet.