Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colouring $(P_r+P_s)$-Free Graphs (1804.11091v3)

Published 30 Apr 2018 in cs.DS and cs.CC

Abstract: The $k$-Colouring problem is to decide if the vertices of a graph can be coloured with at most $k$ colours for a fixed integer $k$ such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list $L(u) \subseteq {1,\cdots, k}$, then we obtain the List $k$-Colouring problem. A graph $G$ is $H$-free if $G$ does not contain $H$ as an induced subgraph. We continue an extensive study into the complexity of these two problems for $H$-free graphs. The graph $P_r+P_s$ is the disjoint union of the $r$-vertex path $P_r$ and the $s$-vertex path $P_s$. We prove that List $3$-Colouring is polynomial-time solvable for $(P_2+P_5)$-free graphs and for $(P_3+P_4)$-free graphs. Combining our results with known results yields complete complexity classifications of $3$-Colouring and List $3$-Colouring on $H$-free graphs for all graphs $H$ up to seven vertices.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Tereza Klimošová (18 papers)
  2. Josef Malík (2 papers)
  3. Tomáš Masařík (51 papers)
  4. Jana Novotná (14 papers)
  5. Daniël Paulusma (110 papers)
  6. Veronika Slívová (4 papers)
Citations (15)