Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Intrusive Signature Extraction for Major Residential Loads (1804.11049v1)

Published 30 Apr 2018 in eess.SP, cs.AI, and cs.CE

Abstract: The data collected by smart meters contain a lot of useful information. One potential use of the data is to track the energy consumptions and operating statuses of major home appliances.The results will enable homeowners to make sound decisions on how to save energy and how to participate in demand response programs. This paper presents a new method to breakdown the total power demand measured by a smart meter to those used by individual appliances. A unique feature of the proposed method is that it utilizes diverse signatures associated with the entire operating window of an appliance for identification. As a result, appliances with complicated middle process can be tracked. A novel appliance registration device and scheme is also proposed to automate the creation of appliance signature database and to eliminate the need of massive training before identification. The software and system have been developed and deployed to real houses in order to verify the proposed method.

Citations (137)

Summary

We haven't generated a summary for this paper yet.