Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Approximation of Incompressible Navier-Stokes Equations Based on an Auxiliary Energy Variable (1804.10859v1)

Published 29 Apr 2018 in physics.flu-dyn, math.NA, and physics.comp-ph

Abstract: We present a numerical scheme for approximating the incompressible Navier-Stokes equations based on an auxiliary variable associated with the total system energy. By introducing a dynamic equation for the auxiliary variable and reformulating the Navier-Stokes equations into an equivalent system, the scheme satisfies a discrete energy stability property in terms of a modified energy and it allows for an efficient solution algorithm and implementation. Within each time step, the algorithm involves the computations of two pressure fields and two velocity fields by solving several de-coupled individual linear algebraic systems with constant coefficient matrices, together with the solution of a nonlinear algebraic equation about a {\em scalar number} involving a negligible cost. A number of numerical experiments are presented to demonstrate the accuracy and the performance of the presented algorithm.

Summary

We haven't generated a summary for this paper yet.