Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Group Inductive Matrix Completion (1804.10653v2)

Published 27 Apr 2018 in stat.ML and cs.LG

Abstract: We consider the problem of matrix completion with side information (\textit{inductive matrix completion}). In real-world applications many side-channel features are typically non-informative making feature selection an important part of the problem. We incorporate feature selection into inductive matrix completion by proposing a matrix factorization framework with group-lasso regularization on side feature parameter matrices. We demonstrate, that the theoretical sample complexity for the proposed method is much lower compared to its competitors in sparse problems, and propose an efficient optimization algorithm for the resulting low-rank matrix completion problem with sparsifying regularizers. Experiments on synthetic and real-world datasets show that the proposed approach outperforms other methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.