Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances (1804.10598v2)

Published 27 Apr 2018 in math.OC

Abstract: In this paper, we are concerned with the stabilization of linear port-Hamiltonian systems of arbitrary order $N \in \mathbb{N}$ on a bounded $1$-dimensional spatial domain $(a,b)$. In order to achieve stabilization, we couple the system to a dynamic boundary controller, that is, a controller that acts on the system only via the boundary points $a,b$ of the spatial domain. We use a nonlinear controller in order to capture the nonlinear behavior that realistic actuators often exhibit and, moreover, we allow the output of the controller to be corrupted by actuator disturbances before it is fed back into the system. What we show here is that the resulting nonlinear closed-loop system is input-to-state stable w.r.t.~square-integrable disturbance inputs. In particular, we obtain uniform input-to-state stability for systems of order $N=1$ and a special class of nonlinear controllers, and weak input-to-state stability for systems of arbitrary order $N \in \mathbb{N}$ and a more general class of nonlinear controllers. Also, in both cases, we obtain convergence to $0$ of all solutions as $t \to \infty$. Applications are given to vibrating strings and beams.

Summary

We haven't generated a summary for this paper yet.