Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trudinger-Moser inequalities on a closed Riemannian surface with the action of a finite isometric group (1804.10386v2)

Published 27 Apr 2018 in math.AP and math.DG

Abstract: Let $(\Sigma,g)$ be a closed Riemannian surface, $W{1,2}(\Sigma,g)$ be the usual Sobolev space, $\textbf{G}$ be a finite isometric group acting on $(\Sigma,g)$, and $\mathscr{H}\textbf{G}$ be a function space including all functions $u\in W{1,2}(\Sigma,g)$ with $\int\Sigma udv_g=0$ and $u(\sigma(x))=u(x)$ for all $\sigma\in \textbf{G}$ and all $x\in\Sigma$. Denote the number of distinct points of the set ${\sigma(x): \sigma\in \textbf{G}}$ by $I(x)$ and $\ell=\inf_{x\in \Sigma}I(x)$. Let $\lambda_1\textbf{G}$ be the first eigenvalue of the Laplace-Beltrami operator on the space $\mathscr{H}\textbf{G}$. Using blow-up analysis, we prove that if $\alpha<\lambda_1\textbf{G}$ and $\beta\leq 4\pi\ell$, then there holds $$\sup{u\in\mathscr{H}\textbf{G},\,\int\Sigma|\nabla_gu|2dv_g-\alpha \int_\Sigma u2dv_g\leq 1}\int_\Sigma e{\beta u2}dv_g<\infty;$$ if $\alpha<\lambda_1\textbf{G}$ and $\beta>4\pi\ell$, or $\alpha\geq \lambda_1\textbf{G}$ and $\beta>0$, then the above supremum is infinity; if $\alpha<\lambda_1\textbf{G}$ and $\beta\leq 4\pi\ell$, then the above supremum can be attained. Moreover, similar inequalities involving higher order eigenvalues are obtained. Our results partially improve original inequalities of J. Moser \cite{Moser}, L. Fontana \cite{Fontana} and W. Chen \cite{Chen-90}.

Summary

We haven't generated a summary for this paper yet.