Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive MPC for Iterative Tasks (1804.09831v1)

Published 25 Apr 2018 in cs.SY

Abstract: This paper proposes an Adaptive Learning Model Predictive Control strategy for uncertain constrained linear systems performing iterative tasks. The additive uncertainty is modeled as the sum of a bounded process noise and an unknown constant offset. As new data becomes available, the proposed algorithm iteratively adapts the believed domain of the unknown offset after each iteration. An MPC strategy robust to all feasible offsets is employed in order to guarantee recursive feasibility. We show that the adaptation of the feasible offset domain reduces conservatism of the proposed strategy, compared to classical robust MPC strategies. As a result, the controller performance improves. Performance is measured in terms of following trajectories with lower associated costs at each iteration. Numerical simulations highlight the main advantages of the proposed approach.

Citations (49)

Summary

We haven't generated a summary for this paper yet.