Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Multimodal Speech Recognition (1804.09713v1)

Published 25 Apr 2018 in eess.AS, cs.CL, and cs.LG

Abstract: Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the data's challenging acoustics, variable signal processing and the essentially unrestricted domain of the data. In previous work, we have shown that the visual channel -- specifically object and scene features -- can help to adapt the acoustic model (AM) and LLM (LM) of a recognizer, and we are now expanding this work to end-to-end approaches. In the case of a Connectionist Temporal Classification (CTC)-based approach, we retain the separation of AM and LM, while for a sequence-to-sequence (S2S) approach, both information sources are adapted together, in a single model. This paper also analyzes the behavior of CTC and S2S models on noisy video data (How-To corpus), and compares it to results on the clean Wall Street Journal (WSJ) corpus, providing insight into the robustness of both approaches.

Citations (40)

Summary

We haven't generated a summary for this paper yet.