Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Percolation and the effective structure of complex networks (1804.09633v1)

Published 25 Apr 2018 in physics.soc-ph and cond-mat.stat-mech

Abstract: Analytical approaches to model the structure of complex networks can be distinguished into two groups according to whether they consider an intensive (e.g., fixed degree sequence and random otherwise) or an extensive (e.g., adjacency matrix) description of the network structure. While extensive approaches---such as the state-of-the-art Message Passing Approach---typically yield more accurate predictions, intensive approaches provide crucial insights on the role played by any given structural property in the outcome of dynamical processes. Here we introduce an intensive description that yields almost identical predictions to the ones obtained with MPA for bond percolation. Our approach distinguishes nodes according to two simple statistics: their degree and their position in the core-periphery organization of the network. Our near-exact predictions highlight how accurately capturing the long-range correlations in network structures allows to easily and effectively compress real complex network data.

Summary

We haven't generated a summary for this paper yet.