Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence guarantees for a class of non-convex and non-smooth optimization problems (1804.09629v1)

Published 25 Apr 2018 in stat.ML, cs.LG, and math.OC

Abstract: We consider the problem of finding critical points of functions that are non-convex and non-smooth. Studying a fairly broad class of such problems, we analyze the behavior of three gradient-based methods (gradient descent, proximal update, and Frank-Wolfe update). For each of these methods, we establish rates of convergence for general problems, and also prove faster rates for continuous sub-analytic functions. We also show that our algorithms can escape strict saddle points for a class of non-smooth functions, thereby generalizing known results for smooth functions. Our analysis leads to a simplification of the popular CCCP algorithm, used for optimizing functions that can be written as a difference of two convex functions. Our simplified algorithm retains all the convergence properties of CCCP, along with a significantly lower cost per iteration. We illustrate our methods and theory via applications to the problems of best subset selection, robust estimation, mixture density estimation, and shape-from-shading reconstruction.

Citations (70)

Summary

We haven't generated a summary for this paper yet.