Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-modal Approach for Affective Computing (1804.09452v2)

Published 25 Apr 2018 in cs.HC

Abstract: Throughout the past decade, many studies have classified human emotions using only a single sensing modality such as face video, electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response (GSR), etc. The results of these studies are constrained by the limitations of these modalities such as the absence of physiological biomarkers in the face-video analysis, poor spatial resolution in EEG, poor temporal resolution of the GSR etc. Scant research has been conducted to compare the merits of these modalities and understand how to best use them individually and jointly. Using multi-modal AMIGOS dataset, this study compares the performance of human emotion classification using multiple computational approaches applied to face videos and various bio-sensing modalities. Using a novel method for compensating physiological baseline we show an increase in the classification accuracy of various approaches that we use. Finally, we present a multi-modal emotion-classification approach in the domain of affective computing research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siddharth Siddharth (7 papers)
  2. Tzyy-Ping Jung (23 papers)
  3. Terrence J. Sejnowski (22 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.