Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable-Matching Voronoi Diagrams: Combinatorial Complexity and Algorithms (1804.09411v2)

Published 25 Apr 2018 in cs.CG and cs.DS

Abstract: We study algorithms and combinatorial complexity bounds for \emph{stable-matching Voronoi diagrams}, where a set, $S$, of $n$ point sites in the plane determines a stable matching between the points in $\mathbb{R}2$ and the sites in $S$ such that (i) the points prefer sites closer to them and sites prefer points closer to them, and (ii) each site has a quota or "appetite" indicating the area of the set of points that can be matched to it. Thus, a stable-matching Voronoi diagram is a solution to the well-known post office problem with the added (realistic) constraint that each post office has a limit on the size of its jurisdiction. Previous work on the stable-matching Voronoi diagram provided existence and uniqueness proofs, but did not analyze its combinatorial or algorithmic complexity. In this paper, we show that a stable-matching Voronoi diagram of $n$ point sites has $O(n{2+\varepsilon})$ faces and edges, for any $\varepsilon>0$, and show that this bound is almost tight by giving a family of diagrams with $\Theta(n2)$ faces and edges. We also provide a discrete algorithm for constructing it in $O(n3\log n+n2f(n))$ time in the real-RAM model of computation, where $f(n)$ is the runtime of a geometric primitive (which we define) that can be approximated numerically, but cannot, in general, be performed exactly in an algebraic model of computation. We show, however, how to compute the geometric primitive exactly for polygonal convex distance functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.