2000 character limit reached
Weighted Leavitt path algebras of finite Gelfand-Kirillov dimension (1804.09287v1)
Published 24 Apr 2018 in math.RA
Abstract: We determine the Gelfand-Kirillov dimension of a weighted Leavitt path algebra $L_K(E,w)$ where $K$ is a field and $(E,w)$ a finite weighted graph. Further we show that a finite-dimensional weighted Leavitt path algebra over a field $K$ is isomorphic to a finite product of matrix rings over $K$.