Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trihedral Soergel bimodules (1804.08920v2)

Published 24 Apr 2018 in math.RT, math.CT, and math.QA

Abstract: The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum $\mathfrak{sl}2$ representation category. It also establishes a precise relation between the simple transitive $2$-representations of both monoidal categories, which are indexed by bicolored $\mathsf{ADE}$ Dynkin diagrams. Using the quantum Satake correspondence between affine $\mathsf{A}{2}$ Soergel bimodules and the semisimple quotient of the quantum $\mathfrak{sl}_3$ representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive $2$-representations corresponding to tricolored generalized $\mathsf{ADE}$ Dynkin diagrams.

Summary

We haven't generated a summary for this paper yet.