Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accurate 3-D Reconstruction with RGB-D Cameras using Depth Map Fusion and Pose Refinement (1804.08912v1)

Published 24 Apr 2018 in cs.CV

Abstract: Depth map fusion is an essential part in both stereo and RGB-D based 3-D reconstruction pipelines. Whether produced with a passive stereo reconstruction or using an active depth sensor, such as Microsoft Kinect, the depth maps have noise and may have poor initial registration. In this paper, we introduce a method which is capable of handling outliers, and especially, even significant registration errors. The proposed method first fuses a sequence of depth maps into a single non-redundant point cloud so that the redundant points are merged together by giving more weight to more certain measurements. Then, the original depth maps are re-registered to the fused point cloud to refine the original camera extrinsic parameters. The fusion is then performed again with the refined extrinsic parameters. This procedure is repeated until the result is satisfying or no significant changes happen between iterations. The method is robust to outliers and erroneous depth measurements as well as even significant depth map registration errors due to inaccurate initial camera poses.

Citations (5)

Summary

We haven't generated a summary for this paper yet.