Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Friendship Networks for Dynamic Link Prediction in Social Interaction Networks (1804.08584v1)

Published 23 Apr 2018 in cs.SI and physics.soc-ph

Abstract: On-line social networks (OSNs) often contain many different types of relationships between users. When studying the structure of OSNs such as Facebook, two of the most commonly studied networks are friendship and interaction networks. The link prediction problem in friendship networks has been heavily studied. There has also been prior work on link prediction in interaction networks, independent of friendship networks. In this paper, we study the predictive power of combining friendship and interaction networks. We hypothesize that, by leveraging friendship networks, we can improve the accuracy of link prediction in interaction networks. We augment several interaction link prediction algorithms to incorporate friendships and predicted friendships. From experiments on Facebook data, we find that incorporating friendships into interaction link prediction algorithms results in higher accuracy, but incorporating predicted friendships does not when compared to incorporating current friendships.

Citations (9)

Summary

We haven't generated a summary for this paper yet.