Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention Based Natural Language Grounding by Navigating Virtual Environment (1804.08454v2)

Published 23 Apr 2018 in cs.CL, cs.AI, cs.CV, and cs.LG

Abstract: In this work, we focus on the problem of grounding language by training an agent to follow a set of natural language instructions and navigate to a target object in an environment. The agent receives visual information through raw pixels and a natural language instruction telling what task needs to be achieved and is trained in an end-to-end way. We develop an attention mechanism for multi-modal fusion of visual and textual modalities that allows the agent to learn to complete the task and achieve language grounding. Our experimental results show that our attention mechanism outperforms the existing multi-modal fusion mechanisms proposed for both 2D and 3D environments in order to solve the above-mentioned task in terms of both speed and success rate. We show that the learnt textual representations are semantically meaningful as they follow vector arithmetic in the embedding space. The effectiveness of our attention approach over the contemporary fusion mechanisms is also highlighted from the textual embeddings learnt by the different approaches. We also show that our model generalizes effectively to unseen scenarios and exhibit zero-shot generalization capabilities both in 2D and 3D environments. The code for our 2D environment as well as the models that we developed for both 2D and 3D are available at https://github.com/rl-lang-grounding/rl-lang-ground.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Akilesh B (1 paper)
  2. Abhishek Sinha (60 papers)
  3. Mausoom Sarkar (23 papers)
  4. Balaji Krishnamurthy (68 papers)
Citations (11)