Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task Planning in Robotics: an Empirical Comparison of PDDL-based and ASP-based Systems (1804.08229v3)

Published 23 Apr 2018 in cs.AI

Abstract: Robots need task planning algorithms to sequence actions toward accomplishing goals that are impossible through individual actions. Off-the-shelf task planners can be used by intelligent robotics practitioners to solve a variety of planning problems. However, many different planners exist, each with different strengths and weaknesses, and there are no general rules for which planner would be best to apply to a given problem. In this article, we empirically compare the performance of state-of-the-art planners that use either the Planning Domain Description Language (PDDL), or Answer Set Programming (ASP) as the underlying action language. PDDL is designed for task planning, and PDDL-based planners are widely used for a variety of planning problems. ASP is designed for knowledge-intensive reasoning, but can also be used for solving task planning problems. Given domain encodings that are as similar as possible, we find that PDDL-based planners perform better on problems with longer solutions, and ASP-based planners are better on tasks with a large number of objects or in which complex reasoning is required to reason about action preconditions and effects. The resulting analysis can inform selection among general purpose planning systems for particular robot task planning domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuqian Jiang (16 papers)
  2. Shiqi Zhang (88 papers)
  3. Piyush Khandelwal (2 papers)
  4. Peter Stone (184 papers)
Citations (61)

Summary

We haven't generated a summary for this paper yet.