Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of the Stochastic Gradient Method for an Approximated Large Scale Kernel Machine (1804.08003v1)

Published 21 Apr 2018 in eess.SP, cs.LG, and stat.ML

Abstract: In this paper we measured the stability of stochastic gradient method (SGM) for learning an approximated Fourier primal support vector machine. The stability of an algorithm is considered by measuring the generalization error in terms of the absolute difference between the test and the training error. Our problem is to learn an approximated kernel function using random Fourier features for a binary classification problem via online convex optimization settings. For a convex, Lipschitz continuous and smooth loss function, given reasonable number of iterations stochastic gradient method is stable. We showed that with a high probability SGM generalizes well for an approximated kernel under given assumptions.We empirically verified the theoretical findings for different parameters using several data sets.

Summary

We haven't generated a summary for this paper yet.