Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cut to Fit: Tailoring the Partitioning to the Computation (1804.07747v1)

Published 20 Apr 2018 in cs.DC

Abstract: Social Graph Analytics applications are very often built using off-the-shelf analytics frameworks. These, however, are profiled and optimized for the general case and have to perform for all kinds of graphs. This paper investigates how knowledge of the application and the dataset can help optimize performance with minimal effort. We concentrate on the impact of partitioning strategies on the performance of computations on social graphs. We evaluate six graph partitioning algorithms on a set of six social graphs, using four standard graph algorithms by measuring a set of five partitioning metrics. We analyze the performance of each partitioning strategy with respect to (i) the properties of the graph dataset, (ii) each analytics computation,of partitions. We discover that communication cost is the best predictor of performance for most -but not all- analytics computations. We also find that the best partitioning strategy for a particular kind of algorithm may not be the best for another, and that optimizing for the general case of all algorithms may not select the optimal partitioning strategy for a given graph algorithm. We conclude with insights on selecting the right data partitioning strategy, which has significant impact on the performance of large graph analytics computations; certainly enough to warrant optimization of the partitioning strategy to the computation and to the dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.