Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moments and convex optimization for analysis and control of nonlinear partial differential equations (1804.07565v1)

Published 20 Apr 2018 in math.OC and math.AP

Abstract: This work presents a convex-optimization-based framework for analysis and control of nonlinear partial differential equations. The approach uses a particular weak embedding of the nonlinear PDE, resulting in a linear equation in the space of Borel measures. This equation is then used as a constraint of an infinite-dimensional linear programming problem (LP). This LP is then approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems (SDPs). In the case of analysis of uncontrolled PDEs, the solutions to these SDPs provide bounds on a specified, possibly nonlinear, functional of the solutions to the PDE; in the case of PDE control, the solutions to these SDPs provide bounds on the optimal value of a given optimal control problem as well as suboptimal feedback controllers. The entire approach is based purely on convex optimization and does not rely on spatio-temporal gridding, even though the PDE addressed can be fully nonlinear. The approach is applicable to a very broad class nonlinear PDEs with polynomial data. Computational complexity is analyzed and several complexity reduction procedures are described. Numerical examples demonstrate the approach.

Summary

We haven't generated a summary for this paper yet.