Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Negative Interactions in Multiplex Networks: A Mutual Information Approach (1804.07210v4)

Published 19 Apr 2018 in cs.SI and physics.soc-ph

Abstract: Many interesting real-world systems are represented as complex networks with multiple types of interactions and complicated dependency structures between layers. These interactions can be encoded as having a valence with positive links marking interactions such as trust and friendship and negative links denoting distrust or hostility. Extracting information from these negative interactions is challenging since standard topological metrics are often poor predictors of negative link formation, particularly across network layers. In this paper, we introduce a method based on mutual information which enables us to predict both negative and positive relationships. Our experiments show that SMLP (Signed Multiplex Link Prediction) can leverage negative relationship layers in multiplex networks to improve link prediction performance.

Summary

We haven't generated a summary for this paper yet.