Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigorous justification of Taylor dispersion via center manifolds and hypocoercivity (1804.06916v2)

Published 18 Apr 2018 in math.AP

Abstract: Taylor diffusion (or dispersion) refers to a phenomenon discovered experimentally by Taylor in the 1950s where a solute dropped into a pipe with a background shear flow experiences diffusion at a rate proportional to $1/\nu$, which is much faster than what would be produced by the static fluid if its viscosity is $0 < \nu \ll 1$. This phenomenon is analyzed rigorously using the linear PDE governing the evolution of the solute. It is shown that the solution can be split into two pieces, an approximate solution and a remainder term. The approximate solution is governed by an infinite-dimensional system of ODEs that possesses a finite-dimensional center manifold, on which the dynamics correspond to diffusion at a rate proportional to $1/\nu$. The remainder term is shown to decay at a rate that is much faster than the leading order behavior of the approximate solution. This is proven using a spectral decomposition in Fourier space and a hypocoercive estimate to control the intermediate Fourier modes.

Summary

We haven't generated a summary for this paper yet.