Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding Longer-term Contextual Multi-modal Information in a Predictive Coding Model (1804.06774v1)

Published 17 Apr 2018 in cs.AI, cs.NE, and cs.RO

Abstract: Studies suggest that within the hierarchical architecture, the topological higher level possibly represents a conscious category of the current sensory events with slower changing activities. They attempt to predict the activities on the lower level by relaying the predicted information. On the other hand, the incoming sensory information corrects such prediction of the events on the higher level by the novel or surprising signal. We propose a predictive hierarchical artificial neural network model that examines this hypothesis on neurorobotic platforms, based on the AFA-PredNet model. In this neural network model, there are different temporal scales of predictions exist on different levels of the hierarchical predictive coding, which are defined in the temporal parameters in the neurons. Also, both the fast and the slow-changing neural activities are modulated by the active motor activities. A neurorobotic experiment based on the architecture was also conducted based on the data collected from the VRep simulator.

Citations (4)

Summary

We haven't generated a summary for this paper yet.