Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning for Breast Cancer Identification (1804.06670v1)

Published 18 Apr 2018 in cs.CV

Abstract: Breast cancer is the second most common malignancy among women and has become a major public health problem in current society. Traditional breast cancer identification requires experienced pathologists to carefully read the breast slice, which is laborious and suffers from inter-observer variations. Consequently, an automatic classification framework for breast cancer identification is worthwhile to develop. Recent years witnessed the development of deep learning technique. Increasing number of medical applications start to use deep learning to improve diagnosis accuracy. In this paper, we proposed a novel training strategy, namely reversed active learning (RAL), to train network to automatically classify breast cancer images. Our RAL is applied to the training set of a simple convolutional neural network (CNN) to remove mislabeled images. We evaluate the CNN trained with RAL on publicly available ICIAR 2018 Breast Cancer Dataset (IBCD). The experimental results show that our RAL increases the slice-based accuracy of CNN from 93.75% to 96.25%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xinpeng Xie (11 papers)
  2. Yuexiang Li (50 papers)
  3. Linlin Shen (133 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.