Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Convolutional Neural Networks with Information Theory: An Initial Exploration (1804.06537v5)

Published 18 Apr 2018 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: The matrix-based Renyi's \alpha-entropy functional and its multivariate extension were recently developed in terms of the normalized eigenspectrum of a Hermitian matrix of the projected data in a reproducing kernel Hilbert space (RKHS). However, the utility and possible applications of these new estimators are rather new and mostly unknown to practitioners. In this paper, we first show that our estimators enable straightforward measurement of information flow in realistic convolutional neural networks (CNN) without any approximation. Then, we introduce the partial information decomposition (PID) framework and develop three quantities to analyze the synergy and redundancy in convolutional layer representations. Our results validate two fundamental data processing inequalities and reveal some fundamental properties concerning the training of CNN.

Citations (70)

Summary

We haven't generated a summary for this paper yet.