Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mage: Online Interference-Aware Scheduling in Multi-Scale Heterogeneous Systems (1804.06462v1)

Published 17 Apr 2018 in cs.DC

Abstract: Heterogeneity has grown in popularity both at the core and server level as a way to improve both performance and energy efficiency. However, despite these benefits, scheduling applications in heterogeneous machines remains challenging. Additionally, when these heterogeneous resources accommodate multiple applications to increase utilization, resources are prone to contention, destructive interference, and unpredictable performance. Existing solutions examine heterogeneity either across or within a server, leading to missed performance and efficiency opportunities. We present Mage, a practical interference-aware runtime that optimizes performance and efficiency in systems with intra- and inter-server heterogeneity. Mage leverages fast and online data mining to quickly explore the space of application placements, and determine the one that minimizes destructive interference between co-resident applications. Mage continuously monitors the performance of active applications, and, upon detecting QoS violations, it determines whether alternative placements would prove more beneficial, taking into account any overheads from migration. Across 350 application mixes on a heterogeneous CMP, Mage improves performance by 38% and up to 2x compared to a greedy scheduler. Across 160 mixes on a heterogeneous cluster, Mage improves performance by 30% on average and up to 52% over the greedy scheduler, and by 11% over the combination of Paragon [15] for inter- and intra-server heterogeneity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com