Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are FPGAs Suitable for Edge Computing? (1804.06404v1)

Published 17 Apr 2018 in cs.DC

Abstract: The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. In this paper, we study the suitability of deploying FPGAs for edge computing from the perspectives of throughput sensitivity to workload size, architectural adaptiveness to algorithm characteristics, and energy efficiency. This goal is accomplished by conducting comparison experiments on an Intel Arria 10 GX1150 FPGA and an Nvidia Tesla K40m GPU. The experiment results imply that the key advantages of adopting FPGAs for edge computing over GPUs are three-fold: 1) FPGAs can provide a consistent throughput invariant to the size of application workload, which is critical to aggregating individual service requests from various IoT sensors; (2) FPGAs offer both spatial and temporal parallelism at a fine granularity and a massive scale, which guarantees a consistently high performance for accelerating both high-concurrency and high-dependency algorithms; and (3) FPGAs feature 3-4 times lower power consumption and up to 30.7 times better energy efficiency, offering better thermal stability and lower energy cost per functionality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saman Biookaghazadeh (1 paper)
  2. Fengbo Ren (25 papers)
  3. Ming Zhao (108 papers)
Citations (91)

Summary

We haven't generated a summary for this paper yet.