Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Similarity between Learning Outcomes from Course Objectives using Semantic Analysis, Blooms taxonomy and Corpus statistics (1804.06333v1)

Published 17 Apr 2018 in cs.CL

Abstract: The course description provided by instructors is an essential piece of information as it defines what is expected from the instructor and what he/she is going to deliver during a particular course. One of the key components of a course description is the Learning Objectives section. The contents of this section are used by program managers who are tasked to compare and match two different courses during the development of Transfer Agreements between various institutions. This research introduces the development of semantic similarity algorithms to calculate the similarity between two learning objectives of the same domain. We present a novel methodology which deals with the semantic similarity by using a previously established algorithm and integrating it with the domain corpus utilizing domain statistics. The disambiguated domain serves as a supervised learning data for the algorithm. We also introduce Bloom Index to calculate the similarity between action verbs in the Learning Objectives referring to the Blooms taxonomy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.