Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Densely Connected High Order Residual Network for Single Frame Image Super Resolution (1804.05902v1)

Published 16 Apr 2018 in cs.CV

Abstract: Deep convolutional neural networks (DCNN) have been widely adopted for research on super resolution recently, however previous work focused mainly on stacking as many layers as possible in their model, in this paper, we present a new perspective regarding to image restoration problems that we can construct the neural network model reflecting the physical significance of the image restoration process, that is, embedding the a priori knowledge of image restoration directly into the structure of our neural network model, we employed a symmetric non-linear colorspace, the sigmoidal transfer, to replace traditional transfers such as, sRGB, Rec.709, which are asymmetric non-linear colorspaces, we also propose a "reuse plus patch" method to deal with super resolution of different scaling factors, our proposed methods and model show generally superior performance over previous work even though our model was only roughly trained and could still be underfitting the training set.

Citations (11)

Summary

We haven't generated a summary for this paper yet.