Papers
Topics
Authors
Recent
Search
2000 character limit reached

Output feedback stabilization of the linearized Korteweg-de Vries equation with right endpoint controllers

Published 13 Apr 2018 in math.OC and math.AP | (1804.05682v2)

Abstract: In this paper, we prove the output feedback stabilization for the linearized Korteweg-de Vries (KdV) equation posed on a finite domain in the case the full state of the system cannot be measured. We assume that there is a sensor at the left end point of the domain capable of measuring the first and second order boundary traces of the solution. This allows us to design a suitable observer system whose states can be used for constructing boundary feedbacks acting at the right endpoint so that both the observer and the original plant become exponentially stable. Stabilization of the original system is proved in the $L2$-sense, while the convergence of the observer system to the original plant is also proved in higher order Sobolev norms. The standard backstepping approach used to construct a left endpoint controller fails and presents mathematical challenges when building right endpoint controllers due to the overdetermined nature of the related kernel models. In order to deal with this difficulty we use the method of [18] which is based on using modified target systems involving extra trace terms. In addition, we show that the number of controllers and boundary measurements can be reduced to one, with the cost of a slightly lower exponential rate of decay. We provide numerical simulations illustrating the efficacy of our controllers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.