Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Spaces of Anisotropic Mixed-Norm Hardy Spaces (1804.05558v1)

Published 16 Apr 2018 in math.CA, math.AP, and math.FA

Abstract: Let $\vec{a}:=(a_1,\ldots,a_n)\in[1,\infty)n$, $\vec{p}:=(p_1,\ldots,p_n)\in(0,\infty)n$ and $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ be the anisotropic mixed-norm Hardy space associated with $\vec{a}$ defined via the non-tangential grand maximal function. In this article, the authors give the dual space of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$, which was asked by Cleanthous et al. in [J. Geom. Anal. 27 (2017), 2758-2787]. More precisely, via first introducing the anisotropic mixed-norm Campanato space $\mathcal{L}{\vec{p},\,q,\,s}{\vec{a}}(\mathbb{R}n)$ with $q\in[1,\infty]$ and $s\in\mathbb{Z}+:={0,1,\ldots}$, and applying the known atomic and finite atomic characterizations of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$, the authors prove that the dual space of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ is the space $\mathcal{L}{\vec{p},\,r',\,s}{\vec{a}}(\mathbb{R}n)$ with $\vec{p}\in(0,1]n$, $r\in(1,\infty]$, $1/r+1/r'=1$ and $s\in[\lfloor\frac{\nu}{a-}(\frac{1}{p_-}-1) \rfloor,\infty)\cap\mathbb{Z}+$, where $\nu:=a_1+\cdots+a_n$, $a-:=\min{a_1,\ldots,a_n}$, $p_-:=\min{p_1,\ldots,p_n}$ and, for any $t\in \mathbb{R}$, $\lfloor t\rfloor$ denotes the largest integer not greater than $t$. This duality result is new even for the isotropic mixed-norm Hardy spaces on $\mathbb{R}n$.

Summary

We haven't generated a summary for this paper yet.