Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Optimal Bandwidth Selection for RBF Kernel using Reproducing Kernel Hilbert Space Operators for Kernel Based Classifiers (1804.05214v1)

Published 14 Apr 2018 in stat.ML and cs.LG

Abstract: Kernel based methods have shown effective performance in many remote sensing classification tasks. However their performance significantly depend on its hyper-parameters. The conventional technique to estimate the parameter comes with high computational complexity. Thus, the objective of this letter is to propose an fast and efficient method to select the bandwidth parameter of the Gaussian kernel in the kernel based classification methods. The proposed method is developed based on the operators in the reproducing kernel Hilbert space and it is evaluated on Support vector machines and PerTurbo classification method. Experiments conducted with hyperspectral datasets show that our proposed method outperforms the state-of-art method in terms in computational time and classification performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.