Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Difficulty Ranking with Multi-Armed Bandits to Sequence Educational Content (1804.05212v1)

Published 14 Apr 2018 in cs.AI

Abstract: As e-learning systems become more prevalent, there is a growing need for them to accommodate individual differences between students. This paper addresses the problem of how to personalize educational content to students in order to maximize their learning gains over time. We present a new computational approach to this problem called MAPLE (Multi-Armed Bandits based Personalization for Learning Environments) that combines difficulty ranking with multi-armed bandits. Given a set of target questions MAPLE estimates the expected learning gains for each question and uses an exploration-exploitation strategy to choose the next question to pose to the student. It maintains a personalized ranking over the difficulties of question in the target set which is used in two ways: First, to obtain initial estimates over the learning gains for the set of questions. Second, to update the estimates over time based on the students responses. We show in simulations that MAPLE was able to improve students' learning gains compared to approaches that sequence questions in increasing level of difficulty, or rely on content experts. When implemented in a live e-learning system in the wild, MAPLE showed promising results. This work demonstrates the efficacy of using stochastic approaches to the sequencing problem when augmented with information about question difficulty.

Citations (28)

Summary

We haven't generated a summary for this paper yet.