Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Markovian Multiresolution Image Labeling Algorithm (1804.04540v2)

Published 20 Mar 2018 in cs.CV

Abstract: This paper describes the results of formally evaluating the MCV (Markov concurrent vision) image labeling algorithm which is a (semi-) hierarchical algorithm commencing with a partition made up of single pixel regions and merging regions or subsets of regions using a Markov random field (MRF) image model. It is an example of a general approach to computer vision called concurrent vision in which the operations of image segmentation and image classification are carried out concurrently. While many image labeling algorithms output a single partition, or segmentation, the MCV algorithm outputs a sequence of partitions and this more elaborate structure may provide information that is valuable for higher level vision systems. With certain types of MRF the component of the system for image evaluation can be implemented as a hardwired feed forward neural network. While being applicable to images (i.e. 2D signals), the algorithm is equally applicable to 1D signals (e.g. speech) or 3D signals (e.g. video sequences) (though its performance in such domains remains to be tested). The algorithm is assessed using subjective and objective criteria with very good results.

Summary

We haven't generated a summary for this paper yet.