Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

De Vries duality for normal spaces and locally compact Hausdorff spaces (1804.04303v1)

Published 12 Apr 2018 in math.GN

Abstract: By de Vries duality, the category of compact Hausdorff spaces is dually equivalent to the category of de Vries algebras. In our recent article, we have extended de Vries duality to completely regular spaces by generalizing de Vries algebras to de Vries extensions. To illustrate the utility of this point of view, we show how to use this new duality to obtain algebraic counterparts of normal and locally compact Hausdorff spaces in the form of de Vries extensions that are subject to additional axioms which encode the desired topological property. This, in particular, yields a different perspective on de Vries duality. As a further application, we show that a duality for locally compact Hausdorff spaces due to Dimov can be obtained from our approach.

Summary

We haven't generated a summary for this paper yet.