Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiscale dynamical embeddings of complex networks (1804.03733v3)

Published 10 Apr 2018 in cs.SI, cs.SY, and physics.soc-ph

Abstract: Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from Control Theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding that can be employed for several analysis tasks. Here we focus on (i)~dimensionality reduction, i.e., projecting nodes onto a low dimensional space that captures dynamic similarity at different time scales, and (ii)~how to exploit our embeddings to uncover functional modules. We exemplify our ideas through case studies focusing on directed networks without strong connectivity, and signed networks. We further highlight how certain ideas from community detection can be generalized and linked to Control Theory, by using the here developed dynamical perspective.

Citations (37)

Summary

We haven't generated a summary for this paper yet.