Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model (1804.03675v1)

Published 10 Apr 2018 in cs.CV

Abstract: We propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with wide ranges of expressions, poses, and illuminations conditioned by a 3D morphable model. Previous adversarial style-transfer methods either supervise their networks with large volume of paired data or use unpaired data with a highly under-constrained two-way generative framework in an unsupervised fashion. We introduce pairwise adversarial supervision to constrain two-way domain adaptation by a small number of paired real and synthetic images for training along with the large volume of unpaired data. Extensive qualitative and quantitative experiments are performed to validate our idea. Generated face images of new identities contain pose, lighting and expression diversity and qualitative results show that they are highly constraint by the synthetic input image while adding photorealism and retaining identity information. We combine face images generated by the proposed method with the real data set to train face recognition algorithms. We evaluated the model on two challenging data sets: LFW and IJB-A. We observe that the generated images from our framework consistently improves over the performance of deep face recognition network trained with Oxford VGG Face dataset and achieves comparable results to the state-of-the-art.

Citations (64)

Summary

We haven't generated a summary for this paper yet.