Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An information-theoretic, all-scales approach to comparing networks (1804.03665v3)

Published 10 Apr 2018 in cs.SI, cs.IT, math.IT, physics.data-an, and physics.soc-ph

Abstract: As network research becomes more sophisticated, it is more common than ever for researchers to find themselves not studying a single network but needing to analyze sets of networks. An important task when working with sets of networks is network comparison, developing a similarity or distance measure between networks so that meaningful comparisons can be drawn. The best means to accomplish this task remains an open area of research. Here we introduce a new measure to compare networks, the Network Portrait Divergence, that is mathematically principled, incorporates the topological characteristics of networks at all structural scales, and is general-purpose and applicable to all types of networks. An important feature of our measure that enables many of its useful properties is that it is based on a graph invariant, the network portrait. We test our measure on both synthetic graphs and real world networks taken from protein interaction data, neuroscience, and computational social science applications. The Network Portrait Divergence reveals important characteristics of multilayer and temporal networks extracted from data.

Citations (80)

Summary

We haven't generated a summary for this paper yet.