Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shifts of group-like projections and contractive idempotent functionals for locally compact quantum groups (1804.03532v2)

Published 10 Apr 2018 in math.OA and math.QA

Abstract: A one to one correspondence between shifts of group-like projections on a locally compact quantum group ${\mathbb{G}}$ which are preserved by the scaling group and contractive idempotent functionals on the dual $\hat{\mathbb{G}}$ is established. This is a generalization of the Illie-Spronk's correspondence between contractive idempotents in the Fourier-Stieltjes algebra of a locally compact group $G$ and cosets of open subgroups of $G$. We also establish a one to one correspondence between non-degenerate, integrable, ${\mathbb{G}}$-invariant ternary rings of operators $X\subset L\infty({\mathbb{G}})$, preserved by the scaling group and contractive idempotent functionals on ${\mathbb{G}}$. Using our results we characterize coideals in $L\infty(\hat{\mathbb{G}})$ admitting an atom preserved by the scaling group in terms of idempotent states on ${\mathbb{G}}$. We also establish a one to one correspondence between integrable coideals in $L\infty({\mathbb{G}})$ and group-like projections in $L\infty(\hat{\mathbb{G}})$ satisfying an extra mild condition. Exploiting this correspondence we give examples of group like projections which are not preserved by the scaling group.

Summary

We haven't generated a summary for this paper yet.