Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The orbit algebra of a permutation group with polynomial profile is Cohen-Macaulay (1804.03489v1)

Published 10 Apr 2018 in math.CO and math.GR

Abstract: Let $G$ be a group of permutations of a denumerable set $E$. The profile of $G$ is the function $\phi_G$ which counts, for each $n$, the (possibly infinite) number $\phi_G(n)$ of orbits of $G$ acting on the $n$-subsets of $E$. Counting functions arising this way, and their associated generating series, form a rich yet apparently strongly constrained class. In particular, Cameron conjectured in the late seventies that, whenever $\phi_G(n)$ is bounded by a polynomial, it is asymptotically equivalent to a polynomial. In 1985, Macpherson further asked if the orbit algebra of $G$ - a graded commutative algebra invented by Cameron and whose Hilbert function is $\phi_G$ - is finitely generated. In this paper, we announce a proof of a stronger statement: the orbit algebra is Cohen-Macaulay. The generating series of the profile is a rational fraction whose numerator has positive coefficients and denominator admits a combinatorial description. The proof uses classical techniques from group actions, commutative algebra, and invariant theory; it steps towards a classification of ages of permutation groups with profile bounded by a polynomial.

Summary

We haven't generated a summary for this paper yet.